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ABSTRACT: Over the past 30 years, atomic force micros-
copy (AFM) has played an important role in elucidating the
structure and properties of polymer surfaces. AFM-based
techniques have enabled the quantitative determination of the
physicochemical properties of polymer surfaces with high
spatial resolution and under a wide variety of conditions.
Coupled with the improvements in spatial and temporal
resolution, multiparametric and multifunctional character-
ization has revealed the delicate interplay between structure,
dynamics, and properties at the surfaces of complex systems.
Here we summarize some of the significant advances that have
been made in synthetic polymeric materials, most in the past 10 years, where AFM has been crucial, and we provide our
perspective on where AFM will be insightful in future and instrumental in advancing emerging areas.

■ INTRODUCTION

Atomic force microscopy (AFM), since its invention in 1986,1

has emerged as the dominant tool for imaging the surface
topography and quantitatively measuring/mapping the phys-
icochemical properties of a wide range of materials.2−4 Unlike
most imaging techniques that rely on the interaction of photons
or electrons with matter, AFM scans a sharp tip attached to the
end of a force-sensing cantilever over the surface, measuring the
spatial variations of the interactions between the tip and the
surface, providing a nanometer-scale (and in some cases
atomic-scale) 2D mapping of the mechanical, electrical,
magnetic, or topographical properties of the surface.1−5 The
operation conditions of the AFM are flexible, from vacuum to
air to liquid media at reduced or elevated temperatures. The
AFM tip can also be used for nanomanipulation and
nanofabrication.6 The multiparametric and multifunctional
characterization, high spatial resolution, and the wide range of
operational conditions have made AFM an exceptionally
versatile tool that has given rise to numerous discoveries and
technologies and opened new opportunities in physics,
chemistry, materials, and biology.7,8

Polymeric materials exhibit spatial and temporal hetero-
geneities in their properties and, for multicomponent systems,
chemical composition that fluctuate about an average value.
With the rapid development of advanced polymerization
techniques,9−11 polymer morphologies are becoming increas-
ingly more complex. Both the applications and developments
pose challenges regarding their micro- and nanoscale structure
and properties and how they are coupled and finally lead to the
emergent bulk properties that determine their ultimate

applications. Consequently, imaging polymeric materials with
nanoscale resolution and characterizing the surface morphology
and topography, while simultaneously measuring and mapping
properties, like the storage and loss modulus, provides a unique
means of linking structure to properties, deciphering their
relationship, and opening pathways for the development of
more advanced materials.
Various microscopy techniques, including AFM, optical

microscopy (OM), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), transmission elec-
tron microtomography (TEMT), laser scanning confocal
microscopy (LSCM), and X-ray tomography, have been widely
used to study the morphologies of polymeric materials. Among
these, generally speaking, only AFM can measure a range of
properties of polymeric materials, in addition to providing an
image. New imaging modes, such as high-speed (HS)
scanning,12 infrared spectroscopy,13,14 and multifrequency
imaging,5 have emerged, significantly expanding the spatial
and temporal resolution and capabilities of AFM. High spatial
and temporal resolution over large areas allows two- or three-
dimensional mapping of the surface topography and the
variation in properties with sub-nanometer lateral and sub-tenth
nanometer height resolution. HS-AFM can record images at a
rate of ∼33 frames/s15 over areas having dimensions from tens
of nm to ∼100 μm. Operating conditions can be varied from
vacuum to air to liquid media over temperature ranges from
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subambient to elevated temperatures. Multiparametric images
of the structure as well as mechanical (such as adhesion,
elasticity, and dissipation), electrical, magnetic, and thermal
properties can be measured at the speed of conventional
topographic imaging. Nondestructive, time-resolved real-space
imaging of dynamics and dynamic processes over length scales
from the nanometer to many hundreds of micrometers are
readily accessible.
Among a wide variety of AFM modes, amplitude-modulation

AFM (usually known as tapping mode AFM), force modes
(e.g., single-molecule force spectroscopy, nanoindentation, and
AFM nanomechanical mapping), electrical modes (e.g.,
conductive AFM, photoconductive AFM, and Kelvin probe
force microscopy) are commonly used to probe polymeric
materials. Moreover, the never-ending developments in the
modes of operation strengthen AFM continuously, making it an
important, if not indispensible, tool for the characterization of
polymeric materials. There have been many reviews and
treatises on these different methods2−4,16−20 and many reviews
and books that describe the use of AFM to characterize soft
materials;3,4,21 most though focus on biological systems.8,22,23

For all AFM modes, a thorough and fundamental under-
standing of the tip−sample interaction is needed to obtain
high-precision images and reliable data. Even for topography
imaging, one must understand that AFM is not a camera or a
simple profilometer. For example, the most commonly used
tapping mode has two tip−sample interaction regimes:
attractive and repulsive.24,25 The attractive interaction regime
allows imaging of the basic morphologies of the sample. More
importantly, this regime is able to resolve the detailed structure
with high resolution. Imaging in the repulsive interaction
regime is associated with the irreversible deformation of a
compliant sample, which will lead to a significant loss in
resolution and contrast. The crossover between attractive and
repulsive regimes will cause changes in height and phase
contrast, sometimes appearing as artifacts, and can be related to
the particular tip−sample interactions dominating in different
set point regimes.26 Here, it also indicates the “height” images
obtained in both regimes, particularly in repulsive regimes, do
not necessarily reflect the “real” surface topography of the
compliant sample because of sample deformation.26,27 On the
other hand, quantitative nanomechanical mapping has been
widely used to measure the nanoscale mechanical properties of
polymer materials, but we are still challenged to obtain more
than relative values. The factors that affect the accurate
measurements of the mechanical properties include not only
the commonly stated caveats about unknown tip geometry,
errors in instrument calibration (e.g., the cantilever spring
constant), or the presence of extrinsic mechanical hetero-
geneities (e.g., the rigid substrate effect) but also, more
importantly, the physical justifications of contact mechanics
models on complex polymeric materials.28−32 Therefore,
developing an understanding of the tip−sample interaction
and modeling are always essential to achieve and interpret high-
quality AFM data (e.g., images, force−distance curves, etc.) and
to extract mechanical, electrical, and magnetic properties
accurately.
With the rapid development of various AFM techniques, it

has now become a routine and, in some cases, an indispensable
tool for unravelling the structural and properties of polymers.
This is a very broad topic, and as such, we refrain from
discussing the wealth of AFM instruments and developments
and the basic principles of imaging and measurements in detail

here, as they are described in detail in the references cited (e.g.,
refs 3, 4, 8, and 20). Here, we summarize some of the
significant advances that have been made in synthetic polymers,
most in the past 10 years, where the advances in AFM played a
critical role, and provide some glimpse into future and
emerging areas.

■ STRUCTURE BY AFM: FROM SURFACE
MORPHOLOGY TO DYNAMICS

Tapping mode is currently the most commonly used AFM
mode for probing polymeric structures. In this mode, the height
image depicts the topography, while the phase image, a measure
of the energy dissipation during the tip−sample interac-
tions,33−36 contains information on the elastic, viscoelastic,
and adhesive properties of the sample and topography. Tapping
mode AFM has been the mainstay for imaging surface
topography, characterizing lateral variation in composition,
and lateral heterogeneities in dynamics for a wide range of
polymers, from glasses to semicrystalline to block copolymers,
rubbers, gels, polymer fibers, polymer blends, and polymer
composites.3,4,37

Surface Mobility and Heterogeneity in Glassy Poly-
mer Thin Films. Thin polymer films have striking dynamic
properties that differ from their bulk counterparts and,
therefore, have practical implications for thin film coatings,
lubrication, adhesion, and friction.38 There have been
substantial efforts to determine the glass transition and
dynamics in films, less than ∼100 nm in thickness, using, for
example, ellipsometry,39 dielectric spectroscopy,40 and X-ray
photon correlation spectroscopy (XPCS).41 Advances in AFM
have afforded unprecedented spatial resolution, both parallel to
and normal to the film surface, in characterizing the surface
topography and viscoelastic properties, providing a direct
measure of surface mobility.42−49

A fundamental question with thin polymer films is whether
there is a reduction in glass transition temperature Tg at the
surface and/or if there is a liquid-like layer at the surface. Initial
AFM force modulation and lateral force microscopy measure-
ments indicated that the surface mobility of polystyrene (PS)
films (200 nm thick) supported on a substrate was higher than
that in the bulk, suggesting a reduced Tg at the surface.42,50,51

An increase in the surface mobility can be explained by an
excess free volume arising from chain end localization at the
surface,42,50−52 a reduced cooperativity of segmental motions
due to the interface with air or vacuum,42,50−53 or a looser
entanglement of surface chains.54,55 By capturing very small
changes in the surface topography of thin PS films with thermal
annealing and analysis of the resultant power spectral density
(PSD) data, recent AFM measurements suggested a lower
viscosity of surface layer in comparison to the bulk.46,56 AFM
measurements of the surface relaxation using nanoholes (shown
in Figure 1a−c)44 or embedded nanospheres45,57,58 at the
surface of glassy films indicated that the surface relaxed much
more rapidly than the bulk and that the surface relaxation had a
weaker temperature dependence in comparison to the bulk.
Both the reduction of viscosity and the “two-step” embedding
process can be explained by a two-layer model, where there is a
thin mobile layer with a thickness of a few nanometers.46,57 The
relaxation of artificially made steps in PS was measured above
and below Tg by AFM, as shown in Figure 1d−g. The
planarization of the film surface above Tg was explained by a
flow of the entire film, while below Tg only the thin layer near
the free surface could flow.48 Again, these results are
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qualitatively consistent with enhanced mobility at the free
surface of polymer thin films. AFM measurements on the
relaxation of thin films showed that substrate interactions can
also influence the surface mobility.58,59 Contrary to these
observations, however, shear-modulated AFM measurements of
surface mobility (at 1400 Hz) of PS thin films were found to be
independent of film thickness (17−500 nm), strength of
substrate interactions, or even the presence of substrate.60 This
observation may be related to the temperature dependence of
surface mobility, where enhancements may be apparent near
and below the bulk Tg and, thus, are observable only on very
long time scales or at very low frequencies. Measurements
performed at higher frequencies, such as those described above,
may not be able to discern distinct surface and bulk relaxation
processes.38

Thermally driven collective dynamics are important for many
macroscopic properties of polymers.61−64 However, our
understanding of these dynamics, which are cooperative and
heterogeneous, remains limited.65,66 AFM measurements on
the dielectric properties of poly(vinyl acetate) (PVAc) revealed
a molecular cooperativity that took the form of transient
molecular clusters and nonexponential kinetics near the glass
transition.67 The wide distribution of relaxation times and the
strongly nonexponential behavior, which correlates with a
broad distribution of spatial fluctuations or structural
heterogeneities near Tg, will be frozen-in at Tg and retained
in the glassy state. High-resolution AFM47 and nanomechanical
mapping68 on the surface mechanical properties of PS thin films
at room temperature clearly demonstrated nanoscale viscoe-
lastic heterogeneities (shown in Figure 2), 2−3 nm in size,
consistent with the size of cooperatively rearranging regions
(CRRs) proposed by Adam and Gibbs69 and as determined by
differential scanning calorimetry,70 and with a variation of
57%.47,71 The broadly distributed viscoelastic heterogeneities
observed in the energy dissipation map suggest there is a wide
distribution of energy barriers for configurational rearrange-
ments and structural relaxations at the glass transition. This
corresponds to a very broad range of relaxation times and
strongly nonexponential behavior as seen in mechanical or
dielectric relaxation spectra.47 The AFM results provide direct
experimental evidence for the nanoscale heterogeneities in

glassy polymers and provide insights for understanding the
origins of the glass transition.

Polymer Crystallization. Polymer crystallization is one of
the most important topics in polymer science. However,
despite more than 60 years of intense study, the way in which
polymers crystallize and the fundamental processes, such as the
formation of initial nuclei and the growth kinetics resulting in
folded intermediate metastable states, which result in their
highly complex hierarchical structures, are far from being fully
understood.72 When coupled with a hot stage, AFM is a unique
tool for the in situ real-time investigation of crystal growth,
melting, and reordering process73−76 at a lamellar and even
molecular scale and has provided new insights that could not
straightforwardly be obtained with other methods. We focus on
the initial development of lamellae and subsequent growth and
high-resolution imaging of the crystals. Recent reviews and
books72,77,78 have dealt with many other topics, including
oriented crystallization, effects of confinement, the influence of
the substrate on crystallization, and the nucleation process.
In situ real-time AFM studies have provided truly unique

insights into the growth of lamellae. Studies on melt
crystallization of poly(ε-caprolactone) (PCL)79 and polypro-
pylene (PP)80 indicate that spiral growths generate additional

Figure 1. Schematic diagram of the evolution of nanoholes (a−c) and artificially made steps and flow regions (d−f). (a) The height profile of the
sample with a nanohole just prepared. The evolution of the depth of the nanohole after annealing times of (b) t1 and (c) t2 (t1 < t2) at a temperature
below Tg of the bulk. The depth of the nanohole decreased with the annealing time owing to the surface relaxation. (d) As-prepared sample at room
temperature. (e) The evolution of the total height profile h(x,t) through flow localized in a small region near the free surface, corresponding to the
flow mechanism at below Tg, and (f) the evolution of the h(x,t) through whole-film flow, corresponding to the flow mechanism at above Tg. The
flow region is indicated in blue. (g) Temperature dependence of the surface mobility (H3/(3η)). Reproduced with permission from ref 48. Copyright
2014 AAAS.

Figure 2. Tapping mode phase image of PS film with ∼200 nm
thickness. The observed heterogeneity was identified to arise from the
inhomogeneous distribution of viscoelastic property. Reproduced with
permission from ref 47. Copyright 2012 American Institute of Physics.
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lamellar layers at low undercoolings. For poly(bisphenol A
octane ether) (PBA-C8) an induced nucleation and subsequent
branching was found.81 The growth tip of PBA-C8 was
observed to be softer than the rest of the crystal,82 indicating
there may exist intermediate degrees of order that are
metastable. Lamellae crystallized from the melt showed a
nodular texture,83,84 suggesting a substructure forms at the
growth front of the lamellae, in keeping with the arguments
made by Strobl.85−87 The crystallization rate, as evidenced by

the work on individual lamellae and lamellar aggregates, varies
from crystal to crystal and for each crystal with time.72,74

For spherulite growth, a depletion zone at the front of a
growing spherulite was observed.74,75 Initial crystal growth is
followed by a protracted period of a backfilling growth and
possibly crystal reorganization.72 In situ observations showed
lamellae twisting to produce banded spherulites where the
twisting was a continuous over a substantial fraction of the
rotation.88 This observation is consistent with X-ray studies89

and provides evidence for models on the long distance self-
organization of the lamellae.90,91 Screw dislocation branches76

and other branching mechanisms82 were directly visualized.
Based on these studies, the formation of a screw dislocation
from a defect or fluctuation at the edge of a growing lamella was
argued to be the main source of branching in polymers.72 Ex
situ AFM observations of polyethylene (PE) crystal growth
suggested an instability-driven branching mechanisms, arising
from a self-induced pressure gradient due to the difference in
densities of the crystalline and amorphous phases.92,93

While there are numerous models to describe crystallization,
crystallization was not understood on a molecular level.
Recently, direct imaging with submolecular resolution, i.e.,
high-resolution imaging of a two-dimensional (2D) crystal
prepared by very slow compression of an isotactic poly(methyl
methacrylate) (i-PMMA) Langmuir film has been available.94

The AFM images clearly showed the folding and tie-chains and
provided a remarkable snapshot of the arrangement of chains
within a crystal.94 The crystalline nuclei preferentially form at
the end of the chains, and the size of the nuclei was found to be
independent of the chain length (molecular weight). At
extremely slow compression rates, crystallization was promoted,
leading to the crystallization of the entire chain.95 The melting
behavior of the 2D i-PMMA crystals was also observed in situ at
high temperatures with molecular resolution.96 The Tm of the
2D crystals was depressed significantly, by up to 90 °C, and
showed a strong dependence on the molecular weight and
nature of the substrate. The large depressions in Tm of the 2D
crystals could not be explained by a simple modified
Thompson−Gibbs equation, creating a theoretical challenge
of the age-old problem. The molecular scale observation of 2D

Figure 3. Torsional-tapping AFM images of the oriented “shish-kebab”
crystallization of polyethylene. (a) The amplitude image (grayscale 17
mV) clearly visualized molecular steps from which the stems’
orientation could be inferred. (Inset) Distribution of widths of
lamellae measured along the stem direction. (b) Details from phase
images showing a first-neighbor fold, marked by an arrow, and (c) a
second-neighbor fold, with arrows marking the two stems. The
grayscales represent a phase lag of (b) 7.7° and (c) 9.2°. Reproduced
with permission from ref 98.

Figure 4. (a, b) Phase images of thin SBS films after annealing in chloroform vapor. Bright (dark) corresponds to PS (PB) microdomains. Contour
lines from the corresponding height images are superimposed. (c) Schematic height profile of (a) and (b). (d) Simulated morphology of a BCP film
in one large simulation box with increasing film thickness (from left to right). Reproduced with permission from ref 105. Copyright 2002 American
Physical Society.
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crystals has provided new insights into the polymer
crystallization and has presented new challenges.
Direct imaging of chains within a three-dimensional

semicrystalline material has been done (Figure 3).97,98

Torsional tapping mode AFM imaging of PE, with a 0.37 nm
resolution, showed individual chains in the crystalline lattice in
air under ambient conditions.97 Loose molecular loops at the
crystal−amorphous interface and the existence of a tight
adjacent fold within this interfacial region were observed.97

Images of this nature have put to rest the very long-standing
debate of the adjacent re-entry or random switchboard
models.99,100 Results from such studies can be directly
compared to polymer crystallization theories and molecular
simulations, addressing very detailed issues, like the length of
stem-to-stem overhang, as shown in Figure 3a.98

High-resolution AFM imaging has provided insight into
almost every aspect of polymer science and has mapped
nanoscale mechanical heterogeneities in glassy polymers47 and
has been used to characterize phase separation in polymer-
based bulk heterojunction (BHJ) organic photovoltaics
(OPV).101 Because of structural similarities and low imaging
contrast between polymer donors and fullerene acceptors,
visualizing structure can be difficult.102 High-resolution AFM
imaging of PTB7/PCBM active layers showed the free surface
was enriched with polymer crystals having a “face-on”
orientation and an average spacing of ∼1.9 nm, and the
morphology at the anode interface was markedly different.101

Block Copolymer Assembly. AFM has been extensively
used to study block copolymer (BCP) self-assembly,103−105

which has recently attracted significant interest from both
industry and academia, since the resultant bulk and thin film
morphologies offer ideal platforms for the generation of
nanoscopically ordered patterns for a range of promising
applications.106−109 Therefore, an in-depth understanding of
these ordered nanostructures with material characteristics and
film preparation conditions is essential to further tailor the
synthesis of BCPs and for the fabrication of nanopatterns or
arrays (Figure 4). In most cases, AFM is combined with
electron microscopies or X-ray-based scattering methods to
reveal the effects of composition, molecular weight, interaction
parameter, interfacial interactions, film thickness, annealing,
crystallization, additives, and chain rigidity on the assembly
process and the resultant size, shape, and orientation of these
nanoscopic structures.107,109 Correct assignment of the
observed surface pattern to a particular morphology is
important for the interpretation of the morphological behavior
in thin films. Beyond routine applications, however, advances in
AFM make it ideal for studying structural defects and dynamics,
self-assembly process, where the aggregates are swollen or filled
with solvent (such as micelles or vesicles), and changes of the
shape due to deposition on the solid surface and drying.
Structural defects in BCP thin films are common and are

known to compromise the long-range lateral order that limit
the technological performance of BCPs.107,110−113 AFM studies
on BCP thin films have identified classical defects (i.e.,
disclinations and dislocations) as well as grain boundary defect
configurations.110,112−115 It was found that the motion of lateral
defects in cylinder-forming BCPs was diffusion controlled.114

The minimum feature spacing accessible in thin films is limited
by thermal defect generation, not by the bulk order−disorder
temperature (ODT).116 Such defect densities and the ODT are
highly sensitive to variations as small as 2 nm in the
microdomain spacing.116 The large shift of monolayer and

bilayer ODT caused by variations of the monolayer domain
spacing can be explained by the energetic cost of defect
production in terms of the domain spacing, interaction
parameter, and BCP composition.116 Early works using time-
resolved AFM identified relinking, joining, and clustering as
basic processes of structural rearrangements.112 When applying
an electric field to ABC BCP thin films, AFM showed two
distinct defect types that govern the orientation mechanism.117

Moreover, in situ imaging of the dynamics and defect
annihilation of polystyrene-b-polybutadiene-b-polystyrene
(SBS) during solvent annealing showed a low interfacial energy
difference between the cylinder and perforated lamella phases
that may account for the energetically favorable path way of
structural rearrangements by temporal phase transitions,118,119

which was also observed by in situ AFM imaging of SB diblock
copolymers under thermal annealing.111 This structural
rearrangement consists of several elementary dynamic
processes, such as short-term interfacial undulations, fast
repetitive transitions between distinct defect configurations,120

and collective/coordinated movement of annihilating de-
fects,114,120 as revealed by high-speed AFM scanning. The fast
dynamics of individual defects and their annihilation in thin
films of a cylinder-forming BCPs121 are illustrated in Figure 5.
BCP micelles, vesicles, and other aggregate structures have

emerged as versatile drug delivery systems, nanoreactors, or as
templates for nanoparticle synthesis.122,123 Besides scattering-
based methods124 and wet scanning and cryogenic TEM,125

AFM has been used to provide in situ information about the
growth of these aggregate structures in solution by tracking the
shape of self-assembled aggregates.126−128 Varying the
architecture of the BCPs, the nature of the solution,126,127

and the underlying surface126,128 have opened numerous routes
to control surface topology, domain size, and wall thickness of
the aggregate structures. For example, the poly(2-(dimethyl-
amino)ethyl methacrylate)-b-poly(methyl methacrylate)
(DMA-MMA) adsorbed on mica showed surface micelles at
low pH and regions of close-packed structure at higher pH,
indicating the importance of pH in the resultant morphology of

Figure 5. (a) AFM phase images visualized climb motion of two
dislocations of opposite Burgers vectors with annealing time. The two
dislocation cores were indicated by the arrows. (b) The plot of square
of the distance between the two dislocation cores versus
corresponding time. Reproduced with permission from ref 121.
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the polyelectrolyte diblock.126,128 For a poly(oyxethylene)-b-
poly(oxypropylene) diblock, a more highly ordered structure
was found on a hydrophobic silica substrate,128 demonstrating
the importance of the chemical nature of the surface on the
resultant morphology of the amphiphilic diblock.
Polymer Subsurface Structure. The surface and bulk

morphologies of polymeric systems are often different.
Reconstruction of three-dimensional (3D) structures is
becoming increasingly important.129 TEMT has been widely
used to this end.130 AFM is a surface technique, but if
sectioning or etching is used in tandem with AFM, subsurface
structures can be determined. This was demonstrated in the
elucidation of the bicontinuous interpenetrating network in
PTB7-based bulk heterojunction active layers.101,131 Nano-
tomography132 has also been developed for the in situ
observation of crystal growth of elastomeric polypropylene,
where the origins of a lamellar branch was found to originate in

a screw dislocation.133 This layer-by-layer imaging technique
was further developed to operate under various conditions and
AFM modes134−136 and found use in the solvent vapor
annealing of BCPs under electric fields137 and visualization of
conductive 3D networks of polymer/MWCNT nanocompo-
sites using c-AFM.135

The methods described above involve destructive sectioning
or etching procedures. Nondestructive subsurface structure
imaging by AFM is under very active development with some
progress being made using ultrasonic wave or energy
dissipation. These have been demonstrated in several polymeric
and cellular systems.138−141 For example, the reconstruction of
the subsurface structure of supramolecular aggregates of
oligothiophenes yielded a 3D picture consisting of 15 nm
wide fibrils with a rigid core and a soft shell.140 In the P3HT
system, the crystalline regions and crystalline fibers were found
to be covered by an ∼7 nm amorphous layer after solvent

Figure 6. (a) AFM height image of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). The width scale of (a) is 500 nm. Reproduced with
permission from ref 169. (b) AFM image of poly(n-butyl acrylate) (PBA) brushes made from poly(alkyl acrylate) and poly(alkyl methacrylate)
backbones (white arrow pointing to branch junctions). Reproduced with permission from ref 174. (c) AFM height images of the PBA bottlebrushes
with the same backbone but different of the degree of polymerization of side chains on a mica substrate. Large images: LB monolayers. Insets: single
molecules prepared by spin-casting. Reproduced with permission from ref 170. Copyright 2016 the Nature Publishing Group.
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casting that decreased to 5 nm after thermal annealing.139 The
presence of the amorphous surface layer has important
consequences in the charge-transfer process. For polymer
nanocomposites, related techniques were used to probe 50 nm
gold particles buried in polymer matrix under ∼1 μm.142 The
nondestructive subsurface imaging was also operated under an
applied electric field, where the dispersion and orientation of
CNTs in polymers were determined with nanometer-scale
resolution.143,144 These results provided in-depth morpholog-
ical information and, hence, are expected to facilitate the
analysis and preparation of polymer nanocomposites in the
future.
Polymer Molecules Engineered Surface. AFM has

played a key role in understanding surface modification by
tethering various polymer molecules using grafting, self-
assembly, or adsorption onto substrates.145 The morphology
of the engineered surfaces is critical in defining the properties.
AFM topography imaging of such surface has quantified the
morphologies and morphological transitions as functions of
grafting density146 and thickness of grafted layers.147,148 The
thickness of the engineered layers especially for polymer brush
modified surface is often used to quantify structural changes as
a function of solvents, pH, temperature, and ionic strength.
AFM has subangstrom height resolution and, therefore, can
measure the layer thickness fast and accurately by cross-section
analysis of the polymer covered and uncovered regions.149

Recently, AFM force−distance curve measurements were used
to determine the layer thickness.150−152 The applied loading
force should must be considered when using AFM to measure
the layer thickness, especially with compliant polymer layers,
since the deformation of the polymers will cause errors in the
measured height values.153,154 For polymer brush modified
surfaces, average molecular weights of the brush were
determined by measuring the heights of the brushes in a
good solvent in comparison to the known monomer length.155

Stimuli-Responsive Behavior. AFM can be used to
monitor in situ the changes in properties (such as adhesion,

wetting, mechanical performance, and friction) of stimuli-
responsive polymers in response to external stimuli, such as
pH,156,157 temperature,155,158 ionic strength,159 light,160 etc.
Here, well-known responsive poly(N-isopropylacrylamide)
(PNIPAM)-based polymers161 show a reversible coil to globule
transition at the so-called lower critical solution temperature
(LCST). Above the LCST, in the collapsed state, hydrophobic
polymeric aggregates are seen at the polymer surface, causing
an abrupt change in the average film thickness and a dramatic
increase in the roughness.155 This transition was also observed
for end-grafted polymer chains that had been grown from
surface-immobilized monomers.162 The transition dynamics
under external stimuli can be easily measured by simply
tracking the height change. High-resolution AFM measure-
ments of a poly(methacrylic acid) brush in response to pH
changes showed swelling and collapse transitions that occur on
the subsecond time frame.157 During the transition, molecular
chains rearranged to another equilibrium structure in response
to the external stimulus, and when compared to the measured
mechanical properties, the structure−mechanical property
relationship was directly determined.163 Such information
provided a better understanding of the structural complexity
and responsive behavior of these advanced stimuli-responsive
polymer materials under external stimuli.
Self-healing polymers represent one of the forefronts in

materials chemistry and engineering.164 AFM can be employed
to image the healing process of this stimuli-responsive
polymers. AFM imaging of the morphology changes as a
function of temperature or time showed the healing process,
uncovering the importance of polymer mobility in the healing.
These in situ AFM observations provided fundamental insights
into the healing of the domain morphology at the nano-
scale.165,166

Polymer Chain Conformation. In situ visualization of
single polymer chains and their motions have long been a
challenge in polymer science.167,168 Until recently, AFM
imaging of a polystyrene-b-poly(methyl methacrylate) (PS-b-

Figure 7. (a) Scheme of SMFS experiment. Reproduced with permission from ref 182. Copyright 2006 Elsevier. (b) A force plateau at ∼13 pN is
observed in the extension−retraction curve of an individual, collapsed PS chain in water. Black curve shows extension (pulling) of a single molecule
and gray curve shows retraction (relaxation) process. Drawings along the curve illustrate the chain configurations of the extension of a single polymer
chain in poor solvent. Reproduced with permission from ref 190. (c) Scheme of the force-induced rotation of carbon−carbon double bonds.
Reproduced with permission from ref 200. (d) Scheme of extracting a single poly(ethylene oxide) chain from a single crystal by SMFS and
corresponding force−extension curves. Reproduced with permission from ref 211.
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PMMA) BCP LB film first visualized random coil conforma-
tions of a single synthetic polymer chain frozen on a substrate
(Figure 6a).169 Shortly thereafter, various structures such as
polymer brushes,170 dendron polymers,171 polyelectrolytes,172

and star polymers173 were observed. In a case study, AFM
molecular imaging of branching in linear acrylate-based
macromolecules provided direct and quantitative information
about branching topology including length and distribution of
branches, not accessible by other methods (shown in Figure
6b).174 This capability was also verified in a study of solvent-
free, supersoft, and superelastic polymer melts and networks
prepared from bottlebrush macromolecules, in which AFM
molecular imaging qualitatively corroborated the increase in
diameter and rigidity of bottlebrushes with increasing of the
degree of polymerization of side chains (Figure 6c−f).170 Not
only the static structure but also the dynamic movements, i.e.,
the conformational rearrangements, of isolated chains in various
environments were visualized.172,173,175,176 Such molecular-level
information, including static conformations and dynamics of
conformational transitions, has greatly improved our under-
standing of the physical properties of polymers.

■ MECHANICAL PROPERTIES BY AFM: FROM
MOLECULE SCALE TO MESOSCOPIC SCALE

Polymer materials often exhibit heterogeneities in material
characteristics and chemical composition which, as we drive
toward ever decreasing feature sizes or thicknesses, under-
standing the characteristic length scales and dynamics of these
heterogeneities becomes increasingly important. AFM serves as
a tool to provide such characterization of the surface. Here, we
focus on recent progress made with the SMFS and AFM
nanomechanical mappingtwo typical force measurements
and studies of synthetic polymers.
Single-Molecule Force Spectroscopy (SMFS). The

principles and use of SMFS can be found elsewhere.177−182

In a typical experiment, a functionalized AFM tip is brought
into contact with the sample surface, where polymer chains
have adsorbed. A single molecule can be bound to the tip and
the substrate, by physical adsorption, ligand−receptor inter-
action, or covalent bonding. The force as a function of the
distance that the cantilever has traveled vertically is measured as
the molecule is stretched and eventually debonds or breaks, as
shown in Figure 7a. The resultant force−distance curves
provide not only the strength of the binding interaction but also
insights into the elastic properties, conformational changes, and
the unfolding of stretched polymer chains with piconewton
sensitivity and subnanometer accuracy. Shortly after the
development of SMFS in a polysaccharides study,183 extensive
works on inter/intramolecular forces of various polymer
systems were investigated.
SMFS studies have shown that at low forces (<100 pN) the

mechanical behavior of polymer chains is mainly affected by its
entropic elasticity, while at high force region, larger than 300
pN, it is mainly affected by the enthalpic elasticity.184 The side
chain effects on the elasticity of polymer chains showed that for
polymers with the same backbone the chains with larger side
groups showed higher stiffness.185,186 Recent SMFS measure-
ments on polymers with side chains of different lengths and
shapes revealed that only long and bulky side chains affected
the enthalpic elasticity of the chain.184 While such studies
directly correlate the molecular structure of the polymers to the
mechanical properties of a single chain, translating this, in
general, to macroscopic properties is still a challenge, though

some success was obtained with a biomimetic designed
polymer.187 Here, the complete, asymmetric potential energy
profile of the rupture and refolding of each monomeric module
showed a correlation with the bulk mechanical behavior by
DMA measurements.
Interactions between the solvent and polymer chains are also

critical, as the aggregation state of polymer chains also affects
the mechanical behavior of the polymer.186,188−192 The
formation of hydrogen bonds, the solvent quality, and the
size of the solvent molecules, i.e., the excluded volume, will
influence the measured elasticity of the single chain.188,189,192

By measuring the elasticity in different solvents, information
about type and strength of interactions between the polymer
and small molecules can be determined. As would be expected,
with a polyelectrolyte, the charge density on the chain plays a
critical role in its elasticity.193 For PS chains, however, the
elasticity constant was found to be the same for all different
organic solvents investigated, but Kuhn length increased
systematically with increasing solvent quality, reflecting the
larger extent of swelling of the polymer in good solvents.192

Force-induced conformational transitions of single polymer
chains can provide fundamental information about internal
structure.194,195 SMFS measurements of a PS chain in water, for
example, showed three regions of the mechanical response
corresponding to chain extension (retraction) and a force-
induced globule−coil transition of polymer chains (Figure 7b),
providing definitive proof of theoretical predictions.196,197 Here,
the hydrophobic PS chains collapsed in water due to
nonfavorable interactions with water,191 manifesting a classic
collapse mechanism where the hydrophobic domain size
dictated the structure and dynamics of water near polymers.198

Force-induced isomerization of the gem-dibromocyclopropane
(gDBC) into 2,3-dibromoalkenes was observed during the
stretching of a gDBC-functionalized polybutadiene.199 The
structural rearrangement indicated the localized stress could be
relaxed in polymers and polymer networks under load.199 More
recently, force-induced cis-to-trans isomerization of carbon−
carbon double bonds has been observed in several polymer
systems (Figure 7c).200,201 These SMFS results indicate unique
possibilities to develop advanced force-responsive materials.
SMFS measurements on a more complex polymer system
forced unfolding of single-chain polymer nanoparticles
(SCNPs), provided insights into the interior structure of
SCNPs, and by analysis of rupture events observed in the force
profiles afforded insights into the assembly mechanism of the
SCNPs.202 Force-inducted structural transitions also provided
important structural information on cross-linked polysacchar-
ides203 and disassembling block copolymer and micelles.204,205

SMFS can also provide quantitative information about intra/
intermolecular interactions of polymer molecules177,180,206,207

as well as desorption forces of polymer chains from the
substrate surface.193,208,209 Most SMFS studies on intermo-
lecular interactions have focused on biological samples, since
such interactions dictate the self-assembly process and direct
the assembly of molecular building blocks into organized
supramolecular structures, which is key for biological processes.
Nonuniform force plateaus were observed when carboxy-
methycellulose (CMC) molecules were pulled out of a polymer
film into a poor solvent and were described by a geometric
model that involves the polymer−polymer and polymer−
solvent interactions.210 Recent SMFS studies on the pull-out of
a single poly(ethylene oxide) (PEO) chain from a single crystal
(shown in Figure 7d)211 clearly demonstrated the adjacent re-
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entry of the PEO chains in the single crystal prepared from
dilute solution.212

SMFS has also been used to the determine molecular weight,
molecular weight distribution, and grafting density150,213 of
surface-grafted polymers,150,213−215 which has been a long-
standing challenge.145 SMFS results for a polycation, poly[2-
(dimethylamino)ethyl methacrylate] (PDMAEMA), grafted
from a poly(methyl methacrylate) (PMMA) backbone were
shown to be consistent with results from gel permeation
chromatography.214 SMFS mapping on RAFT controlled
macromolecular growth on glass surfaces showed the RAFT
chain extension linearly with time up to high conversions
(Figure 8), providing critical insight into macromolecular
growth of the surface-initiated polymerization.215

AFM Nanomechanical Mapping (AFM-NMM). AFM-
based NMM modes, such as force modulation,216 force
volume,27,217 lateral force microscopy (also known as friction
force microscopy),218 contact resonance,219 peak force
tapping,220,221 nanoindentation,222,223 multifrequency force
microscopy,5 and also tapping mode phase imaging,224 provide
sample properties while simultaneously imaging the top-
ography. A versatile and widely used approach among these
is the force−distance (FD) curve-based imaging where an AFM
tip scans over a specified area of the sample surface, and the
corresponding applied force versus tip displacement is
determined. Using appropriate contact mechanics models,
such as the Hertz,225 Johnson−Kendall−Roberts (JKR),226

and Derjaguin−Muller−Toropov (DMT) models,227 the 2D
FD images can be translated into an areal mapping of the
surface mechanical properties, including the elastic modulus,
adhesion, dissipation, and stiffness. By simultaneously providing
microstructure and mechanical properties with nanometer
resolution and piconewton sensitivity, AFM-NMM has become
a routine tool for probing polymer structure and determining
local mechanical properties. Several pioneering studies using
AFM-NMM on polymers have been published.3,4,16,19,21,216

The mechanical properties of thin and ultrathin polymer
films are of critical importance for many applications, ranging
from coatings to organic electronics. AFM-based nano-
indentation measurements on thin polymer films supported
on a noncompliant substrates showed that the effective out-of-
plane modulus increases with decreasing film thickness when it
is smaller than a threshold film thickness.228−230 This

enhancement of the elastic modulus can be explained by the
propagation of the indentation-induced stress field and the
interactions between the thin film and the underlying
substrate.230,231 The indentation-induced stress field propaga-
tion was found by measuring the elastic modulus of linear PS
(LPS) and star-shaped PS (SPS). This was more evident for
SPS than the LPS, indicating a more efficiently “packing” of the
SPS, allowing a more efficient stress transfer.231 Interactions
between the thin film and the substrate were also found to
affect the elastic modulus of the thin films. AFM nano-
indentation simulations on the interfacial mechanical properties
near attractive interfaces of supported PMMA thin films
indicated that there was a gradient of local modulus with larger
values near the substrate compared to the bulk, giving rise to
interfacial confinement effects.232 Force volume NMM
measurements on rubbery poly(vinyl acetate) (PVAc) thin
films further revealed the intermolecular interactions induced
by nanoconfinement significantly affected the elastic and
viscoelastic responses of polymers.233 The above results
provided important insights into the origin of the thickness-
dependent mechanical properties of thin polymer films.
Characterization of the microstructure and mechanical

properties at interfaces in polymer blends and composites has
been a long-standing academic and technological challenge,
since they dictate the ultimate properties. Studies on
polystyrene/poly(n-butyl methacrylate) (PS/PnBMA) blends
using AFM-NMM showed a gradual decrease in the Young’s
modulus from that of PS to that of PnBMA, clearly demarking
the interfacial region.234 AFM-NMM measurements of the
reactive compatibilization of polyolefin elastomer (POE)/
polyamide (PA6) blends demonstrated an interfacial reaction
induced roughening and simultaneously afforded the strength
and width of the interface.235 The ability to map the spatial
distribution of Young’s modulus at an interface provides an
alternate, efficient means of characterizing interfaces. This, of
course, enables the investigation of polymer−polymer inter-
diffusion (shown in Figure 9);221,236 polymer−fullerene
nanoparticle interdiffusion;237 compatibilized polymer blends
where increased interfacial interactions of immiscible polymers
mediated by an ionic liquid were revealed;238 fiber reinforced
polymer composites;239 and carbon black reinforced rubber
nanocomposites, where the thickness and elastic properties of
the bound rubber phase were observed240 and confirmed by

Figure 8. (a) Scheme of SMFS mapping of RAFT-controlled macromolecular growth. (b) Typical force−distance curves of poly(hydroxyethyl
methacrylate) (PHEMA) strands that have different chain length. (c) Plot of contour length of the PHEMA chains versus polymerization time.
Reproduced with permission from ref 215.
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simulations.241 Given the importance of the interface in
defining properties of polymer blends and composites, AFM-
NMM provides a unique view.
There has been much interest in the deformation mechanism

of various polymers since the roles of molecular orientation and
deformation-induced structural changes have been found to be
of particular importance for the ultimate properties of a
polymer. Although X-ray diffraction/scattering was widely used
to probe the local molecular structure and structural dynamics
of various polymers during deformation, they provide only
structural information that is averaged over the area irradiated
with the X-ray beam. With AFM real-space imaging,
considerable information regarding polymer chain orientation,
structural transition and dynamics, and fracture under
deformation can be visualized. Such studies, using contact or
tapping mode AFM, have been performed on semicrystalline
polymers,242−244 elastomeric polyolefins,245,246 thermoplastic
vulcanizates,247 and stretchable electronic devices.248 The real-
space features of uniaxially stretched iPP sheets observed with
frequency-modulation AFM were successfully compared with
the X-ray scattering results obtained by synchrotron X-ray
scattering.249 Not only structural information but also the
mechanical properties associated with structural developments
under deformation are also of interest. Several recent studies
using AFM-NMM have been performed on polymer hydro-
gels,250 semicrystalline polymers,251,252 and elastomers.253,254 In
a case study, AFM-NMM measurements on the structural
evolution and mechanical properties of a deformed isoprene
rubber (IR) clearly demonstrated a hierarchical nanofibrillar
structure, ranging from several to a hundred nanometers in size,
comprised of fibers oriented parallel to the stretching direction
(Figure 10). The nanofibers, connected by oriented amorphous
tie chains, form a network structure that was responsible for
significantly enhanced stress, a key factor giving rise to the self-
reinforcement of IR.253

Information about the viscoelastic properties at the nanoscale
is another essential characteristics of polymeric materials and
also an emerging area of AFM investigation. As discussed
earlier, viscoelastic measurements using several AFM modes
(e.g., force modulation, lateral force microscopy) have shown
that there is a surface mobile layer with a reduced Tg in
comparison to the bulk. With FD curve measurements, AFM-
NMM, by analyzing changes in the pull-off forces in the vicinity
of the glass transition, provided a means to determine the Tg of
the topmost polymer layer.55,255 Not only Tg, FD measure-
ments on glass-to-rubber transition of amorphous polymers
could be used to estimate the parameters of the Williams−
Landel−Ferry equation and the Young’s modulus and the
yielding force of the polymer in a wide range of temperatures
(70 K) and probe rates (6 decades), and the results are in very
good agreement with measurements performed with customary
techniques, such as broadband spectroscopy and dynamic
mechanical analysis (DMA).256 In more recent studies,
viscoelastic properties can be mapped into a 2D image with
nanometer spatial resolution.257 As a case study, the viscoelastic
properties including the storage modulus, loss modulus, and tan
δ of styrene−butadiene rubber (SBR), IR, and a SBR/IR 7/3
blend were estimated and visualized from 1 Hz to 20 kHz using
a recently developed nanorheology mapping technique.258

These quantities obtained by AFM were in agreement with
those measured using bulk DMA. Through this evaluation,
nanorheology mapping has been shown to be a highly
promising AFM mode for quantitative characterization of

viscoelastic materials at the nanoscale, and its benefit to the
research and development of small-scale compliant materials is
expected to be substantial.
In view of the increased importance of tribological properties

(friction, lubrication, and wear) of the surfaces and interfaces of
polymeric materials in lubrication, M/NEMS (micro/nano
electromechanical devices), biomedical implants, and others, a
molecular-level understanding of such tribology behavior is of
special interest259,260 and an increasingly active area of AFM-
NMM investigation.261−263 Early work on estimation of
nanotribological properties by AFM-NMM has been shown
for polymer blends,264 thermoplastics,265 and glassy poly-
mers,218 but most recent work has been focused on polymer
brushes266−269 because of their unique properties, such as
reversible switching behavior, multivalent functionalization,
tunable wettability, and lubrication. In most cases, several FD
curve-based AFM-NMM techniques, such as lateral force and
chemical force microscopies, are combined to estimate the
tribological properties, for example, friction, adhesive, and
elastic properties with nanometer resolution and under a wide
variety of conditions. AFM-NMM measurements of the
nanomechanical and nanotribological properties of polyelec-
trolyte brushes provided insights into how the Young’s
modulus and coefficient of friction can be tuned by varying
the pH of the surroundings and the degree of physical or
chemical cross-linking.267 For polymer brush measurements, it
is crucial to use colloidal probes because of their well-defined
tip geometry and, therefore, can have a good match between
the measured force−distance curves and theoretical models to

Figure 9. AFM-NMM Young’s modulus maps of the miscible
poly(vinyl chloride)/poly(caprolactone) sample annealed at 72 °C
for (a) 5, (b) 20, and (c) 50 min. Reproduced with permission from
ref 221.
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get mechanical properties accurately. This is also true for AFM
measurements on mechanical properties of gels, which is
increasingly important polymeric materials.
The importance of AFM-NMM was also demonstrated in

other polymer systems, such as polymer nanofibers, where, by
measuring the nanoscale mechanical properties of single fibers,
the packing density and structural heterogeneity could be
determined;270−273 stimuli-responsive polymers such as PNI-
PAM that shows a well-known temperature-induced con-
formation transition at LCST, where the nanomechanical
properties below and above the LCST, as well as on the dry
state, were addressed;274,275 semicrystalline polymers, in which
the crystalline regions covered by a thin amorphous layer, were
revealed;276,277 and block copolymers, in which various local
nanomechanical properties, not only Young’s modulus but also
adhesion and energy dissipation, were evaluated.278−281

■ NANOSCALE ELECTRICAL AND ELECTRONIC
PROPERTIES BY AFM

Polymer-based solar cells (PSCs) have attracted significant
attention from both academia and industry due to their
semiconducting properties and potential for low-cost, flexible
devices for alternative energy sources.282−284 For PSC devices,
donor/acceptor blends absorb photons to generate excitons,
which then migrate to the donor/acceptor interfaces where
they dissociate into free charge carriers. This process is
dependent on nanoscopic details of the morphology, which is
dependent on the chemical compositions and processing
conditions.285,286 Advanced AFM modes including conductive
AFM (c-AFM), photoconductive AFM (pc-AFM), and
scanning Kelvin probe force microscopy (KPFM) have been
used to gain an understanding of the structure−performance
relationship for the active layer of PSCs.287−291 c-AFM, a
derivative of AFM contact mode, characterizes the electrical
characteristics with a typical spatial resolution of 10−20 nm. In
this mode, a dc bias is applied between the conductive tip and
sample while the tip scans over the sample surface, and
information about the nanoscale topography and current
distribution (conductivity) is recorded simultaneously. Studies
using c-AFM clearly visualized, as evidenced by current
distribution map, the phase-separated donor and acceptor
regions and the electron- and hole-transport networks.292−296

Heterogeneous conductive regions smaller than 20 nm were
detected.297 The thermal annealing induced heterogeneous

conductivity in poly(3-hexylthiophene) (P3HT) thin
films297,298 increased hole and electron mobilities in P3HT/
[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends292

and decreased the width of the interface between the donor and
acceptor regions.296 The use of solvent additives resulted in a
finely phase-separated morphology295 as evidenced by c-AFM.
Consequently, the processing conditions that determine the
morphology of the active layer could be directly correlated with
the PSC performance.
Similar to the force−distance curves, current−voltage (I−V)

curves can also be extracted from c-AFM and provide some
underlying information on electron conductivity and mobility
of the nanostructures, such as the hole mobilities of P3HT in
neat P3HT films,294,299 in poly(3-alkylthiophene) (P3AT)
nanofibers,300 or in P3HT:PCBM blends,292 which could never
be determined by macroscopic J−V measurements. It should be
noted that there may be a large discrepancy between the charge
carrier mobility measured with c-AFM and that measured by a
macroscopic planar device299,301 due to the geometric differ-
ences between the two experiments and the areas over which
the different methods average.299 Using a semiempirical
equation proposed by Reid et al.,299 however, reliable mobilities
can be extracted, allowing the measurement of local mobilities
with nanoscale resolution in the heterogeneous films used in
light-emitting diodes, transistors, and solar cells.
It is more interesting, however, to obtain information on the

photocurrent generation at the nanoscale that can be used to
correlate with charge generation, transport, and collection that
dominate bulk device performance. pc-AFM, a derivative of c-
AFM but with the addition of a diffraction-limited laser source
to illuminate the device (Figure 11a), has been used to resolve
the complex optoelectronic and morphological phenomena of
PSCs with a typical resolution of 10−20 nm.302−309 Photo-
current mapping of a poly[2-methoxy-5-(3′,7′-dimethyl-
octyloxy)-1,4-phenylenevinylene] (MDMO-PPV)/PCBM film
gave evidence for two length scales of heterogeneities arising
from the solvent casting conditions (shown in Figure 11).302 In
P3HT:PCBM films, pc-AFM data showed significant inhomo-
geneities on the length scale of 100−500 nm, arising from local
variations at the surface, not reflecting the bulk organization.304

In a high-performance PTB7:PCBM blend, pc-AFM revealed a
bulk heterojunction (BHJ) structure consisting of elongated
PCBM-rich and PTB7-rich fiber-like domains, 10−50 nm wide
and 200−400 nm long, indicating that the formation of narrow

Figure 10. AFM-NMM images of stress distribution of isoprene rubber (IR) visualized structural evolution with strain 0% (a), 300% (b), 500% (c),
and 600% (d). The strain is applied in the vertical direction of these images. Reproduced with permission from ref 253.
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and elongated domains is desirable for efficient BHJ solar
cells.309 Moreover, not only the surface but also the subsurface
morphology can be revealed by pc-AFM, with an estimated
depth resolution of ∼20 nm within the P3HT:PCBM film.307

KPFM, a noncontact variant of AFM, can be used to probe
local surface potentials (work function) to local morphologies
with a resolution better than 10 nm.310,311 KPFM is contact-
less, which is an important when dealing with soft organic thin
films. Early studies of MDMO−PPV/PCBM blends using
KPFM identified a barrier for electron transmission from the
electron-rich PCBM nanoclusters toward the extracting
cathode.312 In polyfluorene-based photodiodes, KPFM revealed
the presence of a capping layer that reduces the efficiency of the
photovoltaic device by blocking the transport of photo-
generated electrons to the surface.313 With improved resolution
down to sub-10 nm, surface morphologies of the inter-
penetrated networks of P3HT:PCBM blends are clearly
evident, and the carrier generation at the donor−acceptor
interfaces and their transport through the percolation pathways
in the nanometer range have been directly visualized.310 KPFM
studies on P3HT-b-P3MT and P3HT nanofibers showed that
the surface potential, related to the work function of the
sample, is very sensitive to the nanostructure morphology
resulting from a combined effect of chain-packing disorder,
molecular weight, and local environment.314,315 The decay of
the surface potential into the film was determined on the
∼millisecond scale, which suggested an intensity-dependent
recombination kinetics that is in quantitative agreement with
the carrier recombination kinetics measured in bulk devices.316

The combination of AFM-based techniques, such as c-AFM,
pc-AFM, and KPFM, provides comprehensive characteristics of
the local morphology and the electrical and optoelectronic
properties of PSCs, thereby establishing a direct correlation of
local heterogeneities within the nanostructure and photo-
current generation in the bulk device.287−291 Studies in P3HT/
PCBM blend devices showed that the thermal annealing-
induced morphological heterogeneities, as seen in the
distribution maps of local current (by c-AFM) and short-
circuit photocurrent (by pc-AFM), may lead to the imperfect
internal quantum efficiency of some blends.303 In a poly(3-
butylthiophene) (P3BT):PCBM blend device, the direct
connections between local nanostructure and overall device
performance, as shown in the local current and photocurrent
maps, showed that the nanostructure, controlled by using a
combination of thermal and solvent annealing, is the single
most important variable determining the device perform-
ance,305 while in a P3HT nanowire:PCBM blend devices, the
results demonstrated the importance of vertical morphology
within the active layer on the device performance.306

Copolymer-based devices, in contrast to the physically mixed
polymer:fullerene blends, are inherently microphased separated
on the tens of nanometers level, underscoring the importance
of molecular design and morphological control that determine
the nature of the self-assembled nanostructures for developing
highly efficient polymer:fullerene PSCs.308 Since c-AFM and
pc-AFM are operated in contact mode, c-AFM and pc-AFM
still face challenges including scan-induced damage,306

injection/extraction barriers due to the work function of the
tip,317 and difficulty in making quantitative comparisons with
the external quantum efficiency (EQE) of the macroscopic
diode.

■ PROSPECTS
The past 30 years have seen considerable impact of AFM on
our understanding of polymers. With the advances of
multiparametric and multifunctional characterization with
high resolution and the capacity to operate under various
media, AFM is well positioned to tackle the challenges of
understanding the structure and properties of increasingly more
complex polymers and their composites. In measurement
developments, for example, multifrequency AFM is emerging
and provides a promising framework to improve compositional
sensitivity and spatial and time resolution of materials in their
native environment.318 In a case study, bimodal AFM (one kind
of multifrequency AFM) imaging of metallopolymer-grafted
diblock copolymers clearly revealed a lamellar morphology
featuring a spherical substructure for the polyvinylferrocene
(PVFc) segments inside the polyisoprene lamellae.319 The
morphological structure of the grafted diblock copolymer
measured by bimodal AFM is in excellent agreement with the
TEM and SAXS,319 indicating the high sensitivity for

Figure 11. (a) Schematic of the pc-AFM setup. pc-AFM height image
(b) and photocurrent map (c) of a MDMO-PPV:PCBM 20:80 thin
film. (d) Local current−applied voltage curves acquired at three
locations shown in (b) and (c). Inset: local current−voltage curves
without illumination showing much smaller dark currents. Reproduced
with permission from ref 302.
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compositional heterogeneities well suited for the high-
resolution imaging of polymers. Combining AFM with existing
techniques, in particular chemistry related characterizing
methods, put AFM at an even more advanced level. AFM-IR,
combining AFM and infrared spectroscopy, opens a door to
nanoscale chemical characterization, where the spatial variation
in infrared absorption and reflection with up to a 15 nm
resolution is possible.14,320,321 This advance paves the way for
new insights into the underlying structure beyond phenom-
enological physical responses (e.g., dissipation and mechanical
properties), of a wide range of polymer materials, such as
polymer blends, composites, fibers, and thin films for active
devices, such as organic photovoltaics. Several recent studies
using AFM-IR have shed some light on the structures and
compositions with micro- and nanoscale feature sizes,322−324

which were not been possible by either conventional IR or
AFM. The capabilities of AFM-IR, with the addition of some
other accessories, such as a polarization control, can be further
extended to probe the orientation in anisotropic supra-
molecular assemblies.325 The combination of AFM with mass
spectrometry (MS) for topographical and chemical imaging of
polymer systems has also emerged very recently.326,327

Moreover, the combination of two or more AFM-based
modes to characterize multiple aspects of polymers is another
promising way to characterize polymers with exceptional spatial
resolution. Such a combination, for example, AFM and
scanning electrochemical microscopy (AFM-SCEM), provided
spatially correlated electrochemical and nanomechanical
information paired with high-resolution topographical data of
soft electronic devices.328 It is evident that such combinations
will allow AFM methods to meet the challenges posed by
increasing complexity in structure and function of polymer
materials.
Despite the wealth of information AFM provides, an

important limitation is the relatively slow data acquisition
times that lead to difficulty in following many dynamic
processes and structural transitions of polymers occurring on
the nano- to microseconds time scale. Although recently
commercialized high-speed AFM (HS-AFM), which allows
images to be collected at video rates, has provided new insights
into the nanostructural dynamics and dynamic processes of
biological samples,15,329 its application to polymeric systems has
been limited, since it requires relatively large tip−sample forces
to keep constant tip−sample contact. With improved force and
drift control systems, HS-AFM would make a considerable
impact on our understanding of structural dynamics of
polymers, such as polymer crystal growth and BCP assembly.
Another unresolved, also the most important, issue for high-
precision AFM images and absolute property measurements is
developing an understanding of tip−sample interactions and
modeling (e.g., contact mechanics modeling, tip shape
modeling, etc.). For example, AFM-NMM, by applying some
contact mechanics models such as JKR or DMT, etc., has been
widely used to quantitatively measure the nanoscale mechanical
properties of polymer materials. However, these continuum
contact models have many assumptions.28 Depending on the
tip shape, contact radius, strength of tip−sample adhesion, and
softness of sample, the assumptions of these models are
essential to understand to interpret the force−distance curves
accurately.31,32,330 Recent work has shown that blunt tips must
be used to get valid absolute values of mechanical proper-
ties.30,331 With the continuous development in understandings
of the tip−sample interaction and modeling, improvements in

spatial and temporal resolution, multiparametric and multi-
functional characterization, advances in AFM should lead to a
more comprehensive understanding of the dynamic, structural,
mechanical, chemical, and functional heterogeneity of complex
polymer systems and allow one to address outstanding
questions in polymers in the coming decades.
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Tsarkova, L.; Böker, A. Electric Field Alignment of a Block Copolymer
Nanopattern: Direct Observation of the Microscopic Mechanism. ACS
Nano 2009, 3, 1091−1096.
(118) Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G.
J.; Zvelindovsky, A. V.; Magerle, R. Direct Imaging and Mesoscale
Modelling of Phase Transitions in a Nanostructured Fluid. Nat. Mater.
2004, 3, 886−891.
(119) Horvat, A.; Knoll, A.; Krausch, G.; Tsarkova, L.; Lyakhova, K.
S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Time Evolution of
Surface Relief Structures in Thin Block Copolymer Films. Macro-
molecules 2007, 40, 6930−6939.
(120) Tsarkova, L.; Knoll, A.; Magerle, R. Rapid Transitions between
Defect Configurations in a Block Copolymer Melt. Nano Lett. 2006, 6,
1574−1577.
(121) Tong, Q.; Sibener, S. J. Visualization of Individual Defect
Mobility and Annihilation within Cylinder-Forming Diblock Copoly-
mer Thin Films on Nanopatterned Substrates. Macromolecules 2013,
46, 8538−8544.
(122) Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer
Micelles for Drug Delivery: Design, Characterization and Biological
Significance. Adv. Drug Delivery Rev. 2001, 47, 113−131.
(123) Discher, D. E.; Eisenberg, A. Polymer Vesicles. Science 2002,
297, 967−973.
(124) Van Zanten, J. H.; Monbouquette, H. G. Characterization of
Vesicles by Classical Light Scattering. J. Colloid Interface Sci. 1991, 146,
330−336.
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